Chapter I

$0 \leq p(x) \leq 1$
$\sum p(x)=1$

III. Counting Rules

1. $\quad m n$ Rule; extended $m n$ Rule

If an experiment is performed in two stages, with \boldsymbol{m} ways to accomplish the first stage and \boldsymbol{n} ways to accomplish the second stage, then there are $\boldsymbol{m} \boldsymbol{n}$ ways to accomplish the experiment. For \boldsymbol{k} stages, with the number of ways equal to $\boldsymbol{n}_{\mathbf{1}} \boldsymbol{n}_{\mathbf{2}} \boldsymbol{n}_{\mathbf{3}} \ldots \boldsymbol{n}_{\boldsymbol{k}}$
2. Permutations:

The number of ways you can arrange \boldsymbol{n} distinct objects, taking them \boldsymbol{r} at a time $P_{r}^{n}=\frac{n!}{(n-r)!}$
3. Combinations:

The number of distinct combinations of \boldsymbol{n} distinct objects that can be formed, taking them \boldsymbol{r} at a time is $C_{r}^{n}=\frac{n!}{r!(n-r)!}$

IV. Event Relations

1. Events
a. Disjoint or mutually exclusive: $P(A \cap B)=0$ and $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$.
b. Complementary: $P(A)=1-P\left(A^{C}\right)$
c. Independent events $P(A \cap B)=P(A) P(B)$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}), \mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{B})$
2. Conditional probability: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
3. Additive Rule of Probability: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
4. Multiplicative Rule of Probability: $P(A \cap B)=P(A) P(B \mid A)$
5. Law of Total Probability $\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{A} \cap \mathrm{X}_{1}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{X}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A} \cap \mathrm{X}_{k}\right)=\mathrm{P}\left(\mathrm{X}_{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{X}_{1}\right)+\mathrm{P}\left(\mathrm{X}_{2}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{X}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{X}_{k}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{X}_{k}\right)$;
where $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \ldots, \mathrm{X}_{k}$ be mutually exclusive
6. Bayes' Rule $P\left(X_{i} \mid A\right)=\frac{P\left(X_{i}\right) P\left(A \mid X_{i}\right)}{\sum P\left(X_{i}\right) P\left(A \mid X_{i}\right)}$ for $i=1,2, \ldots k$ where $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{k}$ be mutually exclusive

ChapterlI

	$\begin{aligned} & f_{x}(x)= \\ & P(X=x) \end{aligned}$	$\begin{aligned} & F_{x}(x)= \\ & P(X \leq x) \end{aligned}$		$\begin{aligned} \mu_{x} & =E[X] \\ \sigma_{x}^{2} & =E\left[\left(x-\mu_{x}\right)^{2}\right] \end{aligned}$	Examples
General Discrete	$P(X=x)$	$\sum_{0}^{x} P\left(X=x_{i}\right)$		$\mu_{x}=\sum_{0}^{x} x_{i} f\left(x_{i}\right) d x ; \text { and } \sigma_{\mathrm{x}}^{2}==\sum_{0}^{x}\left(x_{i}-\mu_{x}\right)^{2} f\left(x_{i}\right)$	
General Continuous	$P(X=x)$	$\int_{-\infty}^{x} f(x) d x$		$\mu_{x}=\int_{-\infty}^{x} x f(x) d x ; \text { and } \sigma_{x}^{2}==\int_{-\infty}^{x}\left(x-\mu_{x}\right)^{2} f(x) d x$	
Discrete Uniform $a \leq x \leq b$	$\frac{1}{b-a}$	$\frac{\operatorname{int}(x)-a}{b-a}$	any integer value between a and b inclusive, each equally likely	$\begin{aligned} & \mu_{x}=\frac{a+b}{2} \\ & \sigma_{x}=\frac{b-a}{\sqrt{12}} \end{aligned}$	-Rolling a single die -Follows a uniform distribution over the interval -all events within that class are equally likely to occur
Binomial $\begin{aligned} & x=0,1, \ldots, n \\ & n, p \end{aligned}$	$\binom{\mathrm{n}}{\mathrm{x}_{\mathrm{i}}} P^{x}(1-P)^{n-x}$	$\sum_{0}^{x}\binom{\mathrm{n}}{\mathrm{x}_{\mathrm{i}}} P^{x}(1-P)^{n-x}$	1. The experiment consists of n repeated trials; 2. Each trial results in an outcome that may be classified as a success or a failure (hence the name, binomial); 3. The probability of a success, denoted by p, remains constant from trial to trial and repeated trials are independent.	$\begin{aligned} & \mu_{x}=E\{X\}=n p \\ & \sigma_{x}=\sqrt{n p(1-p)} \end{aligned}$	-Experiments Success or a failure -Coin toss -Male and Female -The patient dies, or does not

Geometric $\begin{aligned} & x=1, \ldots, n \\ & n, p \end{aligned}$	$P(1-P)^{x-1}$	$P \sum_{1}^{x}(1-P)^{x-1}$	The number of Bernoulli trials needed until the first Success occurs ($\mathrm{P}(S)=p$)	$\begin{aligned} & \mu_{x}=E\{X\}=\frac{1}{p} \\ & \sigma_{\mathrm{x}}=\sqrt{\frac{(1-p)}{p^{2}}} \end{aligned}$	-Number of tosses to first head - Number of inspections to obtain first defec- tive -Number of bits transmitted until the first error
$\begin{aligned} & \text { Poisson } \\ & \begin{array}{l} x=1, \ldots, n \\ \lambda \\ T_{-} \text {occurance } \\ T_{-} \text {int erval } \\ b=\lambda T \end{array} \end{aligned}$	$\frac{e^{-b} b^{x}}{x!}$	$\sum_{0}^{x} \frac{e^{-b} b^{x}}{x!}$	Distribution often used to model the number of incidences of some characteristic in time or space	$\begin{aligned} & \mu_{x}=E\{X\}=b \\ & \sigma=\sqrt{b}=\sqrt{\lambda T} \end{aligned}$	-Arrivals of customers in a queue -Numbers of flaws in a roll of fabric -Number of typos per page of text.
Hypergeometric $x=$ $\begin{aligned} & 0,1, \ldots, \min (n, k) \\ & p=\left(\frac{k}{N}\right) \end{aligned}$	$\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$	$\sum_{0}^{x} \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$	Finite population generalization of Binomial Distribution Population: N Elements k Successes	$\begin{aligned} & E\{X\}=n p \\ & \sigma_{x}= \\ & \sqrt{n p(1-p) \frac{N-n}{N-1}} \end{aligned}$	- A sample of n elements are selected at random without replacement. - A batch of 100 piston rings is known to contain 10 defective rings. If two piston rings are drawn from the batch
Exponential $x \geq 0$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$	a process in which events occur continuously and independently at a constant average rate.	$\begin{aligned} & E\{X\}=\frac{1}{\lambda} \\ & \sigma_{x}=\sqrt{\frac{1}{\lambda^{2}}} \end{aligned}$	-The number of calls that arrive each day over a period of a year -Records show that job submissions have a Poisson distribution with an average of 4 per minute -Cracks in specific length

Rayleigh	$\frac{2 x}{b} e^{-x^{2} / b}$	$1-e^{-x^{2} / b}$		$\begin{aligned} & E\{X\}=\sqrt{\frac{\pi b}{4}} \\ & \sigma_{x}=\sqrt{\frac{b(4-\pi)}{4}} \end{aligned}$	-Model multiple paths of dense scattered signals reaching a receiver. -Wind speed, wave heights and sound/light radiation. -The lifetime of an object, where the lifetime depends on the object's age.
Cauchy	$\frac{\alpha \pi}{x^{2}+\alpha^{2}}$	$\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}\left(\frac{x}{\alpha}\right)$		$\begin{aligned} & E\{X\}=\infty \\ & \sigma_{x}=\infty \end{aligned}$	
Gaussian (Normal) $-\infty \leq x \leq \infty$ Normal approximation of the Binomial and Poisson If $\mathrm{n} \gg \mathrm{k}$	$\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} e^{-\frac{\left(x-\mu_{x}\right)^{2}}{s \sigma_{x}^{2}}}$	$\Phi\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)$	represent real-valued random variables whose distributions are not known	$\begin{aligned} & E[X]=\mu_{x} \\ & \sigma_{x}^{2}=\sigma_{x}^{2} \end{aligned}$	When we repeat an experiment numerous times and average our results, the random variable representing the average or mean tends to have a normal distribution as the number of experiments becomes large. -Errors in measurement or production processes can often be approximated by a normal distribution

Linear Functions: $g(Y)=a Y+b \quad(a, b \equiv$ constants $)$
$E[a Y+b]=a \mu+b$
$\operatorname{Var}[a Y+b]=a^{2} \sigma^{2}$
$\sigma_{a Y+b}=|a| \sigma$
Let $\mathrm{Y}=\mathrm{g}(\mathrm{X})$ be a monotonically increasing or decreasing function of $(\mathrm{x}) . f_{y}(y)=\frac{f_{x}(x)}{|d y / d x|}$

